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Finding the sweet spot for invasion theory
Mark A. Lewisa,1

Human activities, such as trade, agriculture, and recre-
ation, have relocatedmuch of the world’s flora and fauna
across geographical space. Although some newly intro-
duced species have faltered, many have thrived and
spread spatially, modifying their new environments. No-
torious invaders, such as zebra mussels or gypsy moths,
have wreaked ecological and economic havoc (1). The
vast, uncontrolled experiment that constitutes the in-
troduction, spread, and impact of alien species across
continental scales has fascinated biologists since the
time of Charles Elton (2), a pioneer in the subject. In-
vasion biology has now emerged as a discipline in its
own right, with experimental, theoretical, and man-
agement components (3).

A key element for an invader’s success is the speed
at which it spreads spatially once established in a new
environment. High spreading speeds yield rapid spa-
tial coverage and the possibility of large geographical
impacts. Ideally, an estimate for the spreading speed
would be available beforehand, allowing biologists
and managers to prepare for and manage the conse-
quences. This is where mathematical theory has an
unexpected role to play: it can come up with a formula
for the spreading speed, based on details of life his-
tory and movement behavior, long before an actual
invasion takes place.

Models may be in continuous or discrete time; they
may track the density of a single species or of multiple
interacting species. Among this variability in model
structure, mathematical theory has shown that there
are two key types of population waves associated
with biological invasion. “Pulled waves” are driven
by growth and dispersal processes at the leading
edge of the invasion where densities are low.
“Pushed waves” are driven by the growth and dis-
persal processes further back in the wave where den-
sities are higher.

For their PNAS paper, Gandhi et al. (4) undertook
an ingenious set of carefully controlled experiments to
investigate pulled and pushed waves in the spatial
invasion of budding yeast populations, cultured in lin-
ear arrays of wells on plates. Here, the exchange of
small volumes of growth media between adjacent

wells simulated spatial dispersal, whereas manipula-
tions of the sugar type in the underlying culture were
sufficient to switch the dynamics from pulled to
pushed waves. The authors were able to connect their
experimental results to theoretical predictions that go
back 40 y regarding the speed and shape of pulled
and pushed waves. Although these predictions have
formed a mainstay of invasion theory, until this present
work they had never been adequately tested in
a controlled environment.

To fully understand the Gandhi et al. (4) paper, it is
necessary to take into account a historical perspective
on the mathematical theory of population spread as-
sociated with biological invasions. Developments can
be traced back to the well-known Fisher-KPP (Kolmo-
gorov-Petrovsky-Piscounov) equation, originally used
to track the geographical advance of an advantageous
allele into a new environment in the late 1930s (5, 6),
and then later reapplied in ecological contexts to inva-
sion biology in the 1950s (7). This equation, which cou-
ples logistic population growth to a spatial diffusion
process, yields an appealing and tractable formula for
the spreading speed: c = 2
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, where r is the per capita
growth rate at low densities and D is the diffusion co-
efficient. It is fascinating that the carrying capacity arising
from competition in logistic growth plays no role in this
formula for the spreading speed. The relevant quantity
for per capita growth, r, is measured at low population
densities. Mathematically, the wave of advance is pulled
across the landscape, driven by growth and dispersal
processes at the leading edge of the invasion where
per capita growth rates are highest and densities are
low, rendering nonlinear interactions negligible. This
spreading speed formula has been widely tested, start-
ing with the work of Skellam (7) and continuing to this
day. These tests have shown that theoretically predicted
speeds compare well to those observed from geograph-
ical case studies for invasions, ranging from the bubonic
plague to insect pests to mammals (8).

Although hailed as a success story in theoretical
ecology (8), tests of the Fisher-KPP spreading speed
theory have been subject to major shortcomings. First,
these tests have been primarily retrospective, explaining

aDepartment of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2G1
Author contributions: M.A.L. wrote the paper.
The author declares no conflict of interest.
See companion article on page 6922.
1Email: mark.lewis@ualberta.ca.

www.pnas.org/cgi/doi/10.1073/pnas.1606665113 PNAS | June 21, 2016 | vol. 113 | no. 25 | 6819–6820

C
O

M
M

E
N
T
A
R
Y

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1606665113&domain=pdf
mailto:mark.lewis@ualberta.ca
www.pnas.org/cgi/doi/10.1073/pnas.1606665113


historical observations rather than predicting future outcomes. Sec-
ond, there has been little possibility for replication; indeed, prevent-
ing repetition of significant invasions is essential to protecting the
environment. Third, the actual form of nonlinear density-dependence
described by logistic growth is too simplistic for many populations.
Social interactions, such as cooperative feeding or sexual reproduc-
tion, produce so-called “Allee effects”: diminished per capita pop-
ulation growth rates at low densities because of a lack of partners.
Allee effects can cause a breakdown in the celebrated Fisher-KPP
spreading speed formula. In this case, rather than being pulled, the
wave of advance is actually pushed, with populations that are well
behind the leading edge having the highest per capita growth, and
then spilling over via diffusion to push the wave forward (9). Although
some theory has been developed for this case (10), there is no simple
replacement formula for the spreading speed. To compound the
issue, the demographic details needed to predict the spreading
speed of a population with an Allee effect are, by definition, difficult
to measure because they require observations of declining popula-
tions at low densities. Thus, predictions and subsequent comparisons
with geographical case studies have been few and far between
(but see ref. 11).

In the paper by Gandhi et al. (4), the Allee effect was induced
by the cooperative growth dynamics arising from sucrose versus
glucose consumption in yeast (Table 1). Thus, the set of laboratory
experiments allowed for replication and modulation of the Allee
dynamics based on known underlying causes, thereby providing a
perfect mechanism for predicting outcomes from specific exper-
imental manipulations on the spreading speed. In summary, the
work overcame the three major shortcomings in testing invasions
outlined in the previous paragraph, and thus constitutes a break-
through in connecting experiment to theory.

Furthermore the experimental set-up allows for additional
detailed comparisons between other theoretical predictions and
experimental observations. As noted above, the theoretical
prediction for pulled waves is that the spreading speed is
independent of carrying capacity. This was tested using glucose
versus galactose sugars, the former having a lower carrying
capacity than the latter (Table 1). It was also possible to test the
steepness of the wave in pushed versus pulled dynamics. The
theoretical prediction is that pushed waves have the steeper
profile. Both theoretical predictions were tested experimentally
and held true.

The Gandhi et al. (4) paper illuminates the role of controlled
small-scale experiments in connecting theory to experiment in
mathematical ecology. Other notable examples include the
search for chaos in biological populations via the manipulation
of flour beetle populations (12), and the analysis of founder effects
in spread rates, again using flour beetles (13). Ecologists may claim
that these experimental systems are manipulated to the point
where conclusions are no longer ecologically relevant. However,
a strong argument can be made that the systems actually become
crucial stepping-stones that lie between the abstract mathematical
theory and the highly complex natural ecological systems that we
ultimately wish to understand.

It is sobering to contemplate that, as with many subjects in
mathematical ecology, the theory of pulled versus pushed
waves preceded experiment by a long shot: the Gandhi et al.
(4) paper comes approximately 40 y after the pioneering math-
ematical work in the subject (9). Although belated, the connec-
tivity speaks to the value of deep mathematical analysis of
biological phenomena, even long before experimental testing
is possible.
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Table 1. Effects of sugar types on growth and invasion dynamics in budding yeast

Growth medium Carrying capacity Growth rate Density dependence Invasion wave type

Galactose High Low Negative Pulled
Glucose Low High Negative Pulled
Sucrose — — Positive/negative Pushed
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